字体:大 中 小
护眼
关灯
上一页
目录
下一页
第二百五十九章 见证奇迹吧!(下) (第10/12页)
点了点头: “当然可以。” F= T·sin(θ Δθ)-T·sinθ=μ·Δxa?2f/?t2。 这是一个最原始的方程组,内容不太清晰,方程左边的东西看着太麻烦了。 因此还需要对它进行一番改造。 至于改造的思路在哪儿呢? 当然是sinθ了。 只见徐云拿起笔,在纸上画了个直角三角形。 众所周知。 正弦值sinθ等于对边c除以斜边a,正切值tanθ等于对边c除以邻边b。 徐云又画了个夹角很小的直角三角形,角度估摸着只有几度: “但是一旦角度θ非常非常小,那么邻边b和斜边a就快要重合了。” “这时候我们是可以近似的认为a和b是相等的,也就是a≈b。” 随后在纸上写到: 【于是就有c/b≈c/a,即tanθ≈sinθ。】 【之前的公式可写成F= T·tan(θ Δθ)-T·tanθ=μ·Δxa?2f/?t2。】 “稍等一下。” 看到这句话,法拉第忽然皱起了眉头,打断了徐云。 很明显。 此时他已经隐隐出现了掉队的迹象: “罗峰同学,用tanθ替代sinθ的意义是什么?” 徐云又看了小麦,小麦当即心领神会: “法拉第先生,因为正切值tanθ还可以代表一条直线的斜率呀,也就是代表曲线在某一点的导数。” “正切值的表达式是tanθ=c/b,如果建一个坐标系,那么这个c刚好就是直线在y轴的投影dy,b就是在x轴的投影dx。” “它们的比
上一页
目录
下一页