字体:大 中 小
护眼
关灯
上一页
目录
下一页
第二百五十九章 见证奇迹吧!(下) (第11/12页)
值刚好就是导数dy/dx,也就是说tanθ=dy/dx。” 法拉第认真听完,花了两分钟在纸上演算了一番,旋即恍然的一拍额头: “原来如此,我明白了,请继续吧,罗峰同学。” 徐云点点头,继续解释道: “因为波的函数f(x,t)是关于x和t的二元函数,所以我们只能求某一点的偏导数。” “那么正切值就等于它在这个点的偏导数tanθ=?f/?x,原来的波动方程就可以写成这样......” 随后徐云在纸上写下了一个新方程: T(?f/?xlx △x-?f/?xlx)=μ·Δxa?2f/?t2。 看起来比之前的要复杂一些,但现场的这些大佬的目光,却齐齐明亮了不少。 到了这一步,接下来的思路就很清晰了。 只要再对方程的两边同时除以Δx,那左边就变成了函数?f/?x在x Δx和x这两处的值的差除以Δx。 这其实就是?f/?x这个函数的导数表达式。 也就是说。 两边同时除以一个Δx之后,左边就变成了偏导数?f/?x对x再求一次导数,那就是f(x,t)对x求二阶偏导数了。 同时上面已经用?2f/?t2来表示函数对t的二阶偏导数,那么这里自然就可以用?2f/?x2来表示函数对x的二阶偏导数。 然后两边再同时除以T,得到方程就简洁多了: ?2f/?x=μ?2f/T?x2。 同时如果你脑子还没晕的话便会发现..... μ/T的单位..... 刚好就是速度平方的倒数! 也就是说如果我们把一个量定义成T/μ的
上一页
目录
下一页