走进不科学_第一百四十一章 11世纪全球最强数算天团!(6.6k) 首页

字体:      护眼 关灯

上一页 目录 下一页

   第一百四十一章 11世纪全球最强数算天团!(6.6k) (第5/9页)

学作图法。

    不过简单归简单,作图法所能给出的信息也非常有限,只能给出已知焦距的透镜的成像性质。

    它没法把焦距和透镜本身的性质联系起来,属于数学上最简单的方式。

    更进一步,则可以使用几何光学的基本原理,也就是费马原理。

    利用费马原理,可以给出几何光学近似情况下透镜形状和材质对成像的影响,数学上比前一个麻烦一些。

    第三阶段就是惠更斯-菲涅尔原理,也就是光的标量波衍射理论。

    用这个理论分析成像问题,还能够给出更多的信息——比如透镜孔径的影响等等,这也是为什么天文望远镜口径越大越好的原因。

    更严格一点的自然就是麦克斯韦方程组了,求解给定边界条件下的波动方程。

    但最后这种方法实在太麻烦了。

    举个最直观的例子:

    后世大学阶梯教室的黑板都见过吧?

    如果用第四种方法,最少需要六块这种黑板——而且还不一定能算出解析解。

    所以除非前面的近似理论不适用,否则一般没人这么干。

    也正因如此,徐云准备走的是第三种思路。

    虽然第二种方式在理论数学上复杂很多,算一个透镜要做两次二重积分。

    但一来它的现实效果最好,在理论体系严重滞后的情况下,现实效果的重要性无需多言。

    二来便是.....

    老贾,他可是杨辉三角的真正发明人。

    杨辉三角是解积分最契合一古老工具之一,因此想让老贾踏出那一步,理论上其实是有不少实cao性的。

    当然了。

    这里的踏出一步并不是指发明微积分,而是一种思路上的暂时性应用。

 
加入书签 我的书架

上一页 目录 下一页