字体:大 中 小
护眼
关灯
上一页
目录
下一页
第二百二十三章 《关于本扑街通宵码了1.5万字所以不想取标题的那些事》 (第5/22页)
.... 随后徐云使劲揉了揉脸颊,认真听起了内容。 接着很快他便确定,汤姆逊和威尔正在讨论的是矩阵和切线空间的问题。 矩阵。 这东西是高等代数学中的常见工具,在古代的中西方数学史上,都能隐约见到过类似矩阵的影子。 例如成书最早在东汉前期的《九章算术》。 在这部算经中,就用分离系数法表示除了线性方程组,得到了其增广矩阵。 接着在消元过程中。 使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,就相当于矩阵的初等变换。 但遗憾的是,那时并没有现今理解的矩阵概念——虽然它与现有的矩阵形式上相同。 因此在当时,这种方法只是作为线性方程组的标准表示与处理方式。 这就和之前提及过的天文历法一样。 它们都属于华夏古代有早期应用,但却没有找到正确方向的工具。 至于现代矩阵的萌芽呢,则出现在高斯时期。 后来由阿瑟·凯利在1858年正式提出矩阵论,他也是公认为的矩阵论的奠基人。 至于再往后就是弗罗伯纽斯和埃尔米特、庞加莱的事儿了,并且最终发展到了目前的常用矩阵模块。 看到这里。 聪明的同学想必已经发现了。 没错。 在正常历史中。 阿瑟·凯利要在在1858年才会正式提出矩阵论,普及到大学的时间更是要接近1870年。 因此很明显。 矩阵这个工具与手电筒一样,又是一个提前出现的理论。 不过根据汤姆逊的教学来看,这个时代对于矩
上一页
目录
下一页